Amounts, isotopic character, and ages of organic and inorganic carbon exported from rivers to ocean margins: 2. Assessment of natural and anthropogenic controls

نویسندگان

  • Katie Hossler
  • James E. Bauer
چکیده

[1] Riverine exports of carbon (C) and organic matter (OM) are regulated by a variety of natural and anthropogenic factors. Understanding the relationships between these various factors and C and OM exports can help to constrain global C budgets and allow assessment of current and future anthropogenic impacts on both riverine and global C cycles. We quantified the effects of multiple natural and anthropogenic controls on riverine export fluxes and compositions of particulate organic C, dissolved organic C, and dissolved inorganic C for a regional group of eight rivers in the northeastern U.S. Potential controls related to hydrogeomorphology and regional climate, soil order, soil texture, bedrock lithology, land use, and anthropogenic factors were analyzed individually, collectively, and at scales of both local and regional influence. Factors related to hydrogeomorphology and climate, followed in importance by land use and anthropogenic factors, exhibited the strongest impacts on riverine C exports and compositions, particularly at smaller localized scales. The effects of hydrogeomorphology and climate were primarily related to volumetric flow, which resulted in greater exports of terrestrial and total C. Principal anthropogenic factors included impacts of wastewater treatment plants (WWTPs) and river impoundments. The presence of WWTPs as well as anthropogenic use of carbonate-based materials (e.g., limestone) may have substantially increased riverine C exports, particularly fossil C exports, in the study region. The presence of nuclear power plants in the associated watersheds is also discussed because of the potential for anthropogenic 14C inputs and subsequent biasing of aquatic C studies utilizing natural abundance 14C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amounts, isotopic character, and ages of organic and inorganic carbon exported from rivers to ocean margins: 1. Estimates of terrestrial losses and inputs to the Middle Atlantic Bight

[1] Rivers transport carbon (C) from terrestrial ecosystems to the coastal ocean, providing significant heterotrophic support within both rivers and receiving coastal waters. The amounts and ages of these terrestrial-river-coastal ocean C fluxes, however, are still poorly constrained. To address this uncertainty, a study of eight rivers discharging to the Middle Atlantic Bight (MAB) was underta...

متن کامل

Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean.

The largest flux of terrigenous organic carbon into the ocean occurs in dissolved form by way of rivers. The fate of this material is enigmatic; there are numerous reports of conservative behavior over continental shelves, but the only knowledge we have about removal is that it occurs on long unknown time scales in the deep ocean. To investigate the removal process, we evaluated terrigenous dis...

متن کامل

Carbon isotope biogeochemistry of tropical small mountainous river, estuarine, and coastal systems of Puerto Rico

Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To add...

متن کامل

The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins

The present study demonstrates that the spectral slope coefficient of chromophoric dissolved organic matter (CDOM) between 275 nm and 295 nm (S275–295) can be used as a tracer of the percent terrigenous dissolved organic carbon (%tDOC) in river-influenced ocean margins, where rivers exert an important control on carbon dynamics and CO2 fluxes. Absorption coefficients of CDOM and concentrations ...

متن کامل

Estimation of riverine carbon and organic matter source contributions using time-based isotope mixing models

[1] Rivers transport globally significant amounts of carbon (C) from terrestrial ecosystems to ocean margins. Understanding and quantifying the sources and respective contributions to riverine C has emerged as an important biogeochemical problem that can be approached through natural-abundance isotope mass balance. Traditionally, the sources of riverine C have been identified either qualitative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013